Journal of Climate , 2005 , Vol 18 , p 2903 - 2921 Maintenance of the Sea - Ice Edge

نویسندگان

  • C. M. Bitz
  • E. C. Hunke
چکیده

A coupled global climate model is used to evaluate processes that determine the equilibrium location of the sea-ice edge and its climatological annual cycle. The extent to which the wintertime ice edge departs from a symmetric ring around either pole depends primarily on coastlines, ice motion, and the melt rate at the ice-ocean interface. At any location the principal drivers of the oceanic heat flux that melts sea ice are absorbed solar radiation and the convergence of heat transported by ocean currents. The distance between the ice edge and the pole and the magnitude of the ocean heat flux convergence at the ice edge are inversely related. The chief exception to this rule is in the East Greenland Current, where the ocean heat flux convergence just east of the ice edge is relatively high but ice survives due to its swift southward motion and the protection of the cold southward flowing surface water. In regions where the ice edge extends relatively far equator-ward, absorbed solar radiation is the largest component of the ocean energy budget, and the large seasonal range of insolation causes the ice edge to traverse a large distance. In contrast at relatively high latitudes, the ocean heat flux convergence is the largest component and it has a relatively small annual range, so the ice edge traverses a much smaller distance there. When the model is subject to increased CO2 forcing up to twice pre-industrial levels, the ocean heat flux convergence weakens near the ice edge in most places. This weakening reduces the heat flux from the ocean to the base of the ice and tends to offset the effects of increased radiative forcing at the ice surface, so the ice edge retreats less than it would otherwise.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abrupt climate shifts in Greenland due to displacements of the sea ice edge

[1] An atmospheric circulation model is used to show that a reduction in sea ice extent in the North Atlantic produces a climatic response consistent with abrupt changes in temperature and snow accumulation recorded in Greenland during the Dansgaard-Oeschger (D-O) events of the last glacial period. The model simulations exhibit warming that is especially pronounced in winter and an accumulation...

متن کامل

Clues to variability in Arctic minimum sea ice extent

[1] Perennial sea ice is a primary indicator of Arctic climate change. Since 1980 it has decreased in extent by about 15%. Analysis of new satellite-derived fields of winds, radiative forcing, and advected heat reveals distinct regional differences in the relative roles of these parameters in explaining variability in the northernmost ice edge position. In all six peripheral seas studied, downw...

متن کامل

Can North Atlantic Sea Ice Anomalies Account for Dansgaard–Oeschger Climate Signals?*

North Atlantic sea ice anomalies are thought to play an important role in the abrupt Dansgaard–Oeschger (D–O) cycles of the last glacial period. This model study investigates the impacts of changes in North Atlantic sea ice extent in glacial climates to help provide geographical constraints on their involvement in D–O cycles. Based on a coupled climate model simulation of the Last Glacial Maxim...

متن کامل

Elimination of the Greenland Ice Sheet in a High CO2 Climate

Projections of future global sea level depend on reliable estimates of changes in the size of polar ice sheets. Calculating this directly from global general circulation models (GCMs) is unreliable because the coarse resolution of 100 km or more is unable to capture narrow ablation zones, and ice dynamics is not usually taken into account in GCMs. To overcome these problems a high-resolution (2...

متن کامل

Antarctic ocean and sea ice response to ozone depletion : a two 1 timescale problem

6 The response of the Southern Ocean to a repeating seasonal cycle of ozone loss is studied 7 in two coupled climate models and found to comprise both fast and slow processes. The 8 fast response is similar to the inter-annual signature of the Southern Annular Mode (SAM) 9 on Sea Surface Temperature (SST), on to which the ozone-hole forcing projects in the sum10 mer. It comprises enhanced north...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012